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Optical coherence tomography (OCT) is employed in the diagnosis of skin cancer. Particularly,
quantitative image features extracted from OCT images might be used as indicators to classify
the skin tumors. In the present paper, we investigated intensity-based, texture-based and fractal-
based features for automatically classifying the melanomas, basal cell carcinomas and pigment
nevi. Generalized estimating equations were used to test for di®erences between the skin tumors.
A modi¯ed p value of < 0.001 was considered statistically signi¯cant. Signi¯cant increase of mean
and median of intensity and signi¯cant decrease of mean and median of absolute gradient were
observed in basal cell carcinomas and pigment nevi as compared with melanomas. Signi¯cant
decrease of contrast, entropy and fractal dimension was also observed in basal cell carcinomas
and pigment nevi as compared with melanomas. Our results suggest that the selected quanti-
tative image features of OCT images could provide useful information to di®erentiate basal cell
carcinomas and pigment nevi from the melanomas. Further research is warranted to determine
how this approach may be used to improve the classi¯cation of skin tumors.

Keywords: Optical coherence tomography; skin tumor; texture analysis; fractal analysis;
di®erentiate box counting.

1. Introduction

Optical coherence tomography (OCT) is an optical
imaging technique that has high dynamic range by
the use of a broadband light source and heterodyne
detection technique.1 The OCT technique has been
used for the diagnosis of skin cancer because it can

provide high resolution, cross sectional images in a

noninvasive manner. By employing the OCT tech-

nique, the structural measurement of skin cancer

can be obtained from OCT scans. The structural

changes can be used to characterize the di®erent

types of skin cancer. The skin cancers include the
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melanomas, basal cell carcinomas and pigment nevi.
Particularly, it is clinically important to ¯nd the
quantitative imaging biomarker of basal cell carci-
nomas and pigment nevi.

The quanti¯cation of the structural measure-
ment with OCT has helped to classify the skin
cancer.2 However, the direct information from
OCT images is the re°ectance (intensity). The
structural measurement is obtained later from re-
°ectance. Therefore, the intensity-based parameters
might be used as the indicators to di®erentiate skin
cancers. Moreover, in biology and medicine, the
shapes of structures such as molecules, cells, tissues
and organs play an important role in the diagnosis
of diseased tissue.3,4 The utilization of texture
analysis and fractal analysis could provide further
information regarding the classi¯cation of skin
cancers.

Our aim was to investigate the possibility of
OCT to classify the skin cancers based on the in-
tensity-based, texture-based and fractal-based fea-
tures. OCT images were obtained from tissues with
melanomas, basal cell carcinomas and pigment nevi.
Intensity histogram and absolute gradient were
calculated. The texture analysis was performed on
OCT images. The fractal dimension was calculated
by using the di®erentiate box counting method.

2. Material and Methodology

2.1. OCT system and data collection

The custom-built OCT system used in this study
employs a broadband light source, delivering an
output power of 20mW at the central wavelength
of 840 nm with a bandwidth of 25 nm (see Fig. 1).
It has a resolution of 3.7�m in tissue that deter-
mines the imaging axial resolution of the system.

A Michelson interferometer splits the light in a 50/
50 ratio along the reference arm and the sample
arm. The spectrometer comprises of a di®raction
grating (1200 grooves per mm) and a CCD line scan
camera (29.3 kHz line rate with 2048 pixel resolu-
tion). The signal is digitized by an image acquisition
card (NI-IMAQ PCI-1428).

The Institutional Review Board of each institu-
tion (Samara State Aerospace University and
Samara State Medical University) involved in the
study approved the study protocol. The research
adhered to the tenets set forth in the Declaration of
Helsinki. Informed consent was obtained from each
subject.

2.2. Histopathological and OCT

images

Ex vivo experiments for skin tissues were performed.
The skin tissue of pigment nevi was collected in the
size of 11:5� 7 cm with 3:5� 2:5 cm light brown
tumor from the right side of anterior abdominal
wall. The skin tissue of the basal cell carcinoma was
collected in the size of 4� 5 cm with 1.5 cm tumor
diameter from the back. The skin tissue of the
melanoma was collected in the size of 8� 3 cm with
1.5 cm in diameter mushroom-like tumor with rough
black borders from the cheek.

Histopathological sections of studied skin sam-
ples were shown in Fig. 2. OCT images were shown
in Fig. 3. Figure 2(a) is a microscope slide of skin
tissue without signs of malignancy. The tissue
which a basal layer is built with the structure of
normal skin cells with a certain amount of pigment
is characterized as pigmented nevi. Similar to the
histopathological section, appropriate OCT image
[see Fig. 3(a)] of studied nevi is de¯ned by speci¯c
layered structure. In contrast to nevi sample basal
cell carcinoma and melanoma tissue samples show
signs of malignancy that help to distinguish them
from normal tissue and nevi. Figure 2(b) represents
histopathology section of basal cell carcinoma
sample. One can clearly see the painted layers of
tumor cells of round or elliptical shape. Basal cell
carcinoma cells on the periphery of the tumor layer
are typically in the form of a lance-like row. This
formation of malignant cells de¯nes changes in op-
tical density of basal cell carcinoma and normal
tissue so the basal cell carcinoma area has a darker
color on the OCT image. The OCT picture of basal

Fig. 1. Spectrometer-based spectral domain optical coherence
tomography (SDOCT) system. 1 – broadband light source,
2 – 50/50 beamsplitter, 3 – sample arm, 4 – reference arm,
5 – spectrometer with grating, 6 – CCD camera, 7 – computer
with IMAQ.
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cell carcinoma [see Fig. 3(b)] has easily observable
tumor formations in the form of round or ellipsoidal
\nests" in the right part of the image, while in the
left part of the image normal structure of epidermis
is visible (including the stratum corneum thin light
layer and darker basal layer turning into the der-
mis). The histopathological section [see Fig. 2(c)]
and OCT image [see Fig. 3(c)] of malignant mela-
noma represents a skin area of tumor and normal
skin borders crossing location. On OCT, melanoma

image normal epidermis (including the stratum
corneum) is seen as a bright stripe on the tissue
surface. Di®usely scattering cells containing mela-
nin complexes and small undi®erentiated cells
without pigment are located under the epidermis
layer. This determines the optical properties of
the tumor. Both OCT and histopathology reveals
destruction of speci¯c layered structure of normal
skin. Randomly located multiform objects of dif-
ferent optical density are visualized on OCT
image instead of normal layered structure. This fact
is due to the heterogeneity of tumor cells. Tumors
include di®erent cell types that can be seen from

(a)

(b)

(c)

Fig. 3. OCT images of studied skin samples (a) pigment nevi;
(b) basal cell carcinoma; (c) melanoma.

(a)

(b)

(c)

Fig. 2. Histopathological sections of studied skin samples
(100�magnification) (a) pigment nevi; (b) basal cell carcinoma;
(c) melanoma.

Medical images classi¯cation for skin cancer
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histopathology section. Melanoma cells may have
an excess amount of pigment or may include non-
pigmented elements which appear on OCT image in
the form of dark and bright areas, respectively.

2.3. OCT image processing

OCT signals were collected and exported from the
OCT device in the form of 16-bit grayscale images.
However, OCT images su®er from a particular type
of noise called \speckle". The speckle is a common
result of the limited spatial-frequency bandwidth
of the interference signals in OCT.5 Because OCT
imaging systems use coherent detection to generate
images, speckle noise signi¯cantly degrades the
OCT image contrast by creating a grainy appear-
ance and by obscuring small, low intensity features;
therefore, this makes it more di±cult to extract the
accurate image features from OCT images. To use
image features to quantitatively classifying the skin
tumors, the denoise of OCT images is required. We
used the interval type II fuzzy anisotropic di®usion
¯lter to remove the speckle noise from OCT ima-
ges.6 The edge enhancement technique is also part

of a novel preprocessing step that facilitates better
feature extraction. Figure 4 demonstrates a sample
OCT image before and after the speckle noise
removal using the interval type II fuzzy anisotropic
di®usion ¯lter. Obviously, the utilization of the in-
terval type II fuzzy anisotropic di®usion ¯lter could
not only e®ectively remove the speckle noise from
OCT images but also enhance the sharp regions
(e.g., edges).

2.4. Quantitative image features

In this section, quantitative image features were
introduced. Those quantitative image features in-
clude the intensity-based, texture-based and fractal-
based parameters (see Table 1). The methodologies
for extracting quantitative image features from
OCT images are also introduced.

2.4.1. Intensity-based features

The re°ectance contained in OCT images not only
represented the amplitude of OCT signals but also
contained the information about the topographic

(a)

(b)

Fig. 4. Denoising results for a sample OCT scan. (a) Original OCT image. (b) Image denoised by using the interval type II fuzzy
anisotropic di®usion ¯lter.
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features and optical properties of the retinal tissue.
In most biological tissues, the main sources of re-
°ection are collagen ¯ber bundles. Dark areas on the
image represent homogeneous material with low
re°ectivity, such as air or clear °uids. Thus, re°ec-
tivity has been used as the indicator to stage the
diseased tissue in the analysis of OCT images.7

Among the intensity-based parameters, intensity
histogram and absolute gradient play an important
role in image analysis. The histogram is a graph
showing the number of pixels in an image at each
di®erent intensity value found in the image. An
image gradient is a directional change in the in-
tensity in an image. Image gradient may be used to
extract information such as edge or shape from
images. The quantitative image features regarding
intensity histogram and absolute gradient are uti-
lized. Those features are mean, median, variance,
skewness and kurtosis of intensity histogram and
absolute gradient.

2.4.2. Texture-based features

Texture is a property that represents the surface
and structure of an image. Generally speaking,
texture can be de¯ned as a regular repetition of an
element or pattern on a surface.8 Textures are
complex visual patterns composed of regions with
sub-patterns with the characteristics of size, shape,
shades, brightness and spatial arrangement. More-
over, a textured area in an image can be charac-
terized by a nonuniform spatial distribution of gray
levels or intensities. The variation in intensity
characterizes a texture and re°ects the physical
variation in the underlying scene. By analyzing
the spatial arrangement of color or intensities in
an image or selected region of interest (ROI), the
image's irregularities can be measured.

Accordingly, texture parameters such as, energy,
entropy, correlation and contrast were extracted by

using second-order statistical texture analysis.9 The
spatial gray level co-occurrence matrices (SGLDMs)
suggested by Haralick have been widely used to
estimate the texture features related to second-
order statistical texture analysis.10 SGLDMs were
obtained for ROIs based on the estimation of
the second-order joint conditional probability den-
sity function s�ði; j j dÞ. Each s�ði; j j dÞ denotes
the probability of a pixel with a gray-level value \i"
being a \d" pixel away from another pixel of
gray-level value \j" in the \�" direction. Then,
four texture parameters including energy, entropy,
correlation and contrast were calculated from
SGLDMs. Energy denotes the sum of the sum of
the square of each value in a local neighborhood:

Energy ¼
XL�1

i¼0

XL�1

j¼0

½s�ði; j j dÞ�2;

where L is the number of gray levels in the image.
Entropy denotes a measure of information con-

tent by measuring the randomness of the intensity
distribution:

Entropy ¼
XL�1

i¼0

XL�1

j¼0

s�ði; j j dÞ log½s�ði; j j dÞ�:

Contrast denotes a measure of the local varia-
tions present in an image:

Contrast ¼
XL�1

i¼0

XL�1

j¼0

ði� jÞ2s�ði; j j dÞ:

Correlation denotes a measure of image linearity.
The value of correlation will be high if an image
contains a considerable amount of linear structure:

Correlation

¼
PL�1

i¼0

PL�1
j¼0 ði� �xÞðj� �yÞs�ði; j j dÞ

�x�y
;

where �x, �y and �x, �y denote the mean and
standard deviations of the row and column sums
of the gray level dependence matrices s�ði; j j dÞ,
respectively.

2.4.3. Fractal-based feature

The fractal dimension was ¯rst used to describe the
self-similar pattern in the coastline of Britain by
Mandelbrot in 1967. Mandelbrot found that the
measured length of coastline changed as a di®erent

Table 1. List of quantitative image features extracted from
each OCT image.

Intensity
histogram

Absolute
gradient Texture

Fractal
analysis

Mean Mean Contrast Fractal dimension
Median Median Correlation
Variance Variance Entropy
Skewness Skewness Energy
Kurtosis Kurtosis

Medical images classi¯cation for skin cancer
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size of measuring ruler was used. The fractal di-
mension was introduced and interpolated as a scale
that was applied to the ruler used to measure the
length of coastline. The scale can be regarded as a
characterization that is used to describe the
roughness of a surface such as the coastline. Due to
this characterization, the fractal dimension was
commonly used for the evaluation of the complexity
of an object. Higher values indicate rougher sur-
faces. In the analysis of OCT images, fractal anal-
ysis has been used to investigate the structural
change of biological tissue. For example, Fluearu
et al. used the box counting method to calculate the
fractal dimension to characterize porcine arterial
tissue.11 Sullivan et al. utilized the box counting
method to calculate the fractal dimension to classify
the breast carcinoma.12 Gao applied the power
spectrum method to perform the fractal analysis on
the layered retinal tissue for diagnosing diabetic
retinopathy.13 In those studies, fractal analysis
was performed on each A-scan within each ROI.
Therefore, only the irregularity or roughness along
the A-scan was considered in the 1D fractal analy-
sis, while the irregularity or roughness in all other
directions was ignored. Thus, to extend the fractal
analysis in all directions in two-dimensional OCT
images, 2D fractal analysis is necessary.

To determine the fractal dimension for 2D image,
several de¯nitions of fractal dimension have been
used.14 One simple and understandable methodol-
ogy for calculating the fractal dimension is the
di®erentiate box counting method.15 The method-
ology of di®erentiate box counting method can be
described below. Consider an image of size M �M
as a 3D spatial surface with ðx; yÞ denoting the
2D position on the image plane and the third
coordinate ðzÞ denoting gray level (see Fig. 5). In
the di®erentiate box counting method, the image
plane is partitioned into nonoverlapping blocks
of size s� s, where M=2 � s � 2 and s is an
integer. Then let an estimate of r ¼ s=M . On each
block, there is a column of boxes of size s� s� s 0,
where s 0 is the height of each box. G=s 0 ¼ M=s and
G is the total number of gray levels. Assign numbers
1; 2; . . . to the boxes as shown in Fig. 4. Let the
minimum and maximum gray level in the ði; jÞth
grid fall in the box number k and l, respectively.
The boxes covering this block are counted in the
number as

nrði; jÞ ¼ l� kþ 1:

Taking contributions across all grids, we have

Nr ¼
X

i;j

nrði; jÞ;

where Nr is counted for di®erent values of r. Then,
the fractal dimension of 2D image can be estimated
from the least square linear ¯t of logðNrÞ versus
logð1=rÞ.

2.5. Statistical analysis

Quantitative image features is reported after cal-
culating from the OCT images of the melanomas,
basal cell carcinomas and pigment nevi. The dif-
ferences in quantitative image features between
study groups were tested using an ANOVA followed
by Newman–Keuls post-hoc analysis. Because of
the number of comparisons, p � 0:001 was consid-
ered statistically signi¯cant. 0:001 < p � 0:05 was
considered missed statistically signi¯cant. The
ANOVA calculations and statistical analyses were
performed using the software package Statistica
version 8 (StatSoft Inc., Tulsa, Oklahoma).

3. Results and Discussion

The quantitative analysis of OCT data for diag-
nosing has been already proposed in ¯brotic condi-
tions where optical density has been used as the
biomarker.16 While in this study, intensity-based,
texture-based and fractal-based features were ex-
tracted from OCT images and then were used for
the classi¯cation. Tables 2 and 3 showed the results
of intensity-based parameters. Signi¯cant increases

Fig. 5. Sketch of determination of the number of boxes by the
DBC method.15

W. Gao et al.
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of mean and median of intensity distribution were
observed when comparing basal cell carcinoma with
melanomas (see Table 2). Speci¯cally, the mean and
median of intensity of basal cell carcinoma increased
to 77.1% and 80.9% as compared to melanomas.
When comparing pigment nevi with melanomas,
the mean and median of intensity showed a missed
statistical signi¯cant increase. And signi¯cant
decreases of mean, median and variance of absolute
gradient were observed when comparing basal cell
carcinoma and pigment nevi with melanomas (see
Table 3). As compared to melanomas, the mean,
median and variance of absolute gradient in basal
cell carcinoma decreased 16.6%, 16.6% and 28.1%,
respectively. As compared to melanomas, the mean,
median and variance of absolute gradient of pig-
ment nevi decreased to 23.8%, 25.4% and 34.8%,
respectively. Table 4 showed the result of texture
analysis. Signi¯cant di®erence of contrast, entropy

and energy were observed when comparing basal
cell carcinoma with melanomas. Speci¯cally, the
contrast (entropy) of basal cell carcinoma decreased
77.0% (69.2%) while the energy increased to 26.9%
as compared to melanomas. When comparing pig-
ment nevi with melanomas, the contrast, correla-
tion and entropy showed the statistical signi¯cant
decrease, while the energy showed the statistical
signi¯cant increase. Table 5 showed the result of
fractal analysis. Signi¯cant decrease of fractal di-
mension was observed when comparing basal cell
carcinoma and pigment nevi with melanomas. The
fractal dimension of basal cell carcinoma decreased
to 6.1% as compared to melanomas. The fractal
dimension of pigment nevi decreased to 6.7% as
compared to melanomas.

Our results suggest that the lower re°ectance
was re°ected from melanomas than others. This
might be associated with pathological metabolic
changes in the melanomas, where abundant
hazardly distributed atypical melanocytes and
pagetoid cells are present at all levels of the

Table 2. Distribution statistics of intensity histogram
(mean� SD) by study groups.

Intensity
histogram Melanomas Nevi Basal

Mean 6:294� 1:919 10:161� 1:404a 11:146� 3:508b

Median 6:237� 2:141 10:182� 1:358a 11:284� 3:636b

Variance 18:499� 3:382 10:275� 2:309b 20:399� 3:343
Skewness 0:044� 0:393 0:081� 0:482 �0:094� 0:245
Kurtosis 3:540� 0:697 4:285� 1:772 2:866� 0:299

a0:001 < p < 0:05
bp < 0:001 (ANOVA followed by Newman–Keuls post hoc
analysis) between melanomas and pigment nevi (see nevi col-
umn) and between melanomas and basal cell carcinoma (see
basal column).

Table 3. Distribution statistics of absolute gradient
(mean� SD) by study groups.

Absolute
gradient Melanomas Nevi Basal

Mean 1:625� 0:133 1:238� 0:080b 1:355� 0:063b

Median 1:341� 0:137 1:000� 0:079b 1:118� 0:061b

Variance 1:386� 0:171 0:903� 0:102b 0:997� 0:094b

Skewness 1:476� 0:196 1:750� 0:154a 1:563� 0:203
Kurtosis 6:133� 0:918 7:969� 1:223a 7:080� 1:637

a0:001 < p < 0:05
bp < 0:001 (ANOVA followed by Newman–Keuls post hoc
analysis) between melanomas and pigment nevi (see nevi
column) and between melanomas and basal cell carcinoma
(see basal column).

Table 4. Distribution statistics of texture parameters
(mean� SD) by study groups.

Texture
analysis Melanomas Nevi Basal

Contrast 2:666� 1:647 0:299� 0:345b 0:613� 0:700b

Correlation 0:665� 0:048 0:268� 0:185b 0:484� 0:242a

Entropy 0:914� 0:567 0:083� 0:105b 0:281� 0:368b

Energy 0:731� 0:172 0:977� 0:028b 0:928� 0:095b

a0:001 < p < 0:05
bp < 0:001 (ANOVA followed by Newman–Keuls post hoc
analysis) between melanomas and pigment nevi (see nevi col-
umn) and between melanomas and basal cell carcinoma (see
basal column).

Table 5. Distribution statistics of fractal dimension
(mean� SD) values by study groups.

Fractal analysis Melanomas Nevi Basal

Fractal
dimension

2:290� 0:099 2:137� 0:066b 2:151� 0:075b

a0:001 < p < 0:05
bp < 0:001 (ANOVA followed by Newman–Keuls post hoc
analysis) between melanomas and pigment nevi (see nevi
column) and between melanomas and basal cell carcinoma
(see basal column).

Medical images classi¯cation for skin cancer
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epidermis.17 Moreover, the dark areas in the deeper
regions visible in the OCT images are possible ne-
crotic or cystic regions. Our results showed the de-
creasing trend of contrast and entropy in basal cell
carcinoma and pigment nevi as compared to mela-
nomas. Contrast denotes the intensity di®erence;
the high feature value represents image pixels
with large intensity di®erences being in close prox-
imity. Entropy gives higher values to regions that
contain a wide variety of intensity distributions.
The trend observed for the contrast and entropy
may re°ect the relatively large inhomogeneous in-
tensities re°ected from melanomas than basal cell
carcinoma and pigment nevi. This fact may associ-
ate with the irregular and light-absorbing organs
that were widely distributed in melanomas than in
basal cell carcinoma and pigment nevi, which is
coincident with the fact that energy showed in-
creasing trend in basal cell carcinoma and pigment
nevi. The reason is that it gives high feature values
to image regions that have only a small number of
intensity distribution patterns. This parameter is
large in homogeneous scenes. Our results also indi-
cated that the large fractal dimension was obtained
in the melanomas than in basal cell carcinoma and
pigment nevi. Fractal dimension was used as an
indicator for the disorder or irregularity in the bi-
ological tissue. The larger value of fractal dimension
in melanomas denotes the more disorder or irregu-
larity inside this type of skin cancer. This might be
associated with the fact that a denser network of
unorganized vessels with chaotic branching in mel-
anomas. This particular result also re°ects the dis-
order inside the melanomas, which could be an
indication that could be used as an additional in-
dicator to enable the classi¯cation between mela-
nomas and basal cell carcinoma.

There are some potential shortcomings of our
study. The custom-built OCT technology has some
limitations compared to the more advanced OCT
technology. In addition, current OCT devices in-
clude di®erent algorithms and methods for speckle
noise removal. Therefore, data analysis is in°uenced
by special assumptions and technological speci¯ca-
tions that are in place for each individual OCT
device. Another limitation is that only 1 of each
lesion type was included in this study although 10
cross-sectional images were randomly selected for
each lesion. However, more lesions rather than more
scans of the same lesion would be bene¯cial to ¯nd
the diagnostic parameters.

4. Conclusion

In summary, we have described a methodology to
use the quantitative image features extracted from
OCT images to classify the melanomas, basal cell
carcinoma and pigment nevi in this paper. The early
results presented have shown that the intensity-
based, texture-based and fractal-based features
could be used in the diagnosis of skin tumors. Par-
ticularly, the changes in intensity distribution and
fractal dimension may re°ect the pathological
metabolic changes in melanomas. Future studies are
needed to determine the accuracy, repeatability
and full capability of this methodology with more
OCT scans.
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